食品学院

实验室安全风险辨识与防控

分享人: 张申魁

2023年6月14日

实验室安全要解决的四个问题

提升安全意识,知危险,懂防护,激发内生动力;

拓展安全知识,知风险,懂防控,降低实验风险;

熟悉应急处置,知常识,懂应急,保护生命安全;

培养团队精神,知安危,懂互助,形成安全文化。

实验室安全研究综述:实验室安全,警钟长鸣!

加拿大温莎大学的A. Dana Menard和John F. Trant 在*Nature Chemistry*上发表综述文章,对近些年学术实验室安全研究进行了总结分析。

2008-2018年部分有公开资料报道的实验室事故汇总: 多例有科研人员遇难的严重实验室安全事故。

无论是对试剂的熟悉程度还是个人防护习惯,其实都折射出背后一个 很重要的问题,那就是**专业的安全培训**。

调查显示:

- 60%的受访者接受过针对特殊试剂的安全培训;
- 47%的受访者不知道他们所在实验室的安全培训频率
- 甚至9%的人不知道该如何处理诸如着火、试剂撤漏等突发事件。

Menard & Trant, Nature Chemistry 2020, 12, 17.

Table 1 | A partial list of researchers killed in laboratory accidents at academic institutions (2008–2018)

Year Institution		Location	Accident description	
2018	Jiaotong University	Beijing, China	Three graduate students (names unknown) killed during an explosion while researching wastewate treatment	
2018	Indian Institute of Science		Manoj Kumar killed in high-pressure hydroger cylinder explosion	
2015	Tsinghua University	Beijing China	Meng Xiangjian, postdoctoral fellow, killed in hydrogen explosion	
2015	University of Health Sciences	Phnom Penh, Cambodia	Huy Siep killed when flammable gas ignited	
2014	Texas A&M University at Qatar	Doha, Qatar	Hassan Kamal Hussein killed in explosion in petroleum lab	
2012	Unknown university	Shanghai, China	Graduate student (name unknown) opened a poison gas cylinder and died from inhalation	
2011	Yale University	New Haven, USA	Michele Dufault died during a lathe accident	
2009	University of Chicago	Chicago, USA	Malcolm Casadaban died from exposure to plague-related bacterium	
2008	UCLA	Los Angeles, USA	Sheri Sangji died from burns caused by gnition of tert-butyl lithium	

Adapted from ref. 'm*. Laboratory Safety Institute

事故 直接经济损失

事故 间接经济损失

隐藏成本是直接成 本的8-11倍!

□ 对伤亡者的治疗、赔偿 □ 对损坏设备的修理、更换

- □ 应急的费用
- □ 事故调查的花费
- 实验室恢复的花费
- _ 时间、成果的损失
- □ 停止实验的损失
- ┗ 清理现场的费用
- _ 师生心理的影响

□ 学校声誉损失

对于管理人员和教师:

主动作为,履职尽责好过亡羊补牢,事后补救

对于开展实验的同学:

主动识别,防控风险 好过 事后懊悔,追悔莫及

结合实验室危险源情况,

结合实验流程操作步骤!

没有人比实验者更了解所处的环境和所开展的实验。

■ 风险辨识的概念

风险辨识:系统使用既有信息,识别危险,并预测其对于人员、财产和

环境的风险。风险辨识是一种主动的方法,目的是避免可能发生的事故。

危险源辨识

可能性分析

后果分析

☑风险辨识——人的因素

心理生理性危险有害因素

负荷超限 (体力或精力)

健康状况异常

心理异常 (情绪异常、冒险心 理、过度紧张)

行为性危险有害因素

指挥错误

操作错误(误操作、违规操作)

☑ 风险辨识——物的因素(物理性)

设备、设施、工具、 附件缺陷

防护缺陷

电伤害

电离辐射

非电离辐射

运动物伤害

高温

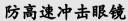
标志缺陷

低温液体、有害光 照、振动、噪声

■眼部防护

➤实验中常见的眼部危害来源:

- 化学品喷溅
- 强光、有害光照射
- 机械冲击
- ▶ 化学实验过程中实验者配戴贴合眼眶四周的护目镜(防护眼镜、眼罩)。
- △ 化学实验过程中禁止佩戴隐形眼镜。



安全眼镜(可供访客用)

对于易溅、易爆等极易伤害眼部的高危险 性实验操作,要采取更加严格的防护措施。

电焊防护眼镜

■面部防护

根据不同的实验风险, 选择合适的防护面罩, 面屏等

- 液体喷溅
- 机械冲击
- 爆炸冲击

■手部防护

根据实验中手部伤害的具体风险,正确、有效、适度防护!

实验室使用背景:

- 不少学生受高中化学老师影响, 不带一次性丁腈手套做实验心里不踏实?
- 目前国内实验室大部分是一次性丁腈手套"扛把子",过度使用造成环境负担大!
- 不是所有实验必须戴手套, 也不能乱戴手套, 一次性丁腈手套不能包打天下!

常用化学防护 (天然)橡胶手 套 <u>丁腈手</u> 套

优点

- ✓ 抗酸、碱、盐和醇类 性能良好;
- ✔ 可抗轻度磨损刺穿;

✔ 抗酸、碱、盐、醇、

性良好;

✓ 操作灵活性好

油、油脂性能良好;

✔ 抗切割、刺穿和耐磨

✔ 富有弹性, 触感良好

乳胶蛋白过敏者慎用;

缺点

- 易分解老化; 不耐油;
- 抗有机溶剂(芳香族) 性能和气体弱;
- 不适用于高浓度硝酸或硫酸
- 对酮类(丙酮)、芳香族、 酯类和气体防护不足;
- 不适用于高浓度硝酸或硫酸,易被氧化

常用化学防护

优 点

缺 点

		• • • • • • • • • • • • • • • • • • • •
手套材质		
氯丁橡胶手套	✓ 抗酸、碱、盐、 广泛的有机溶	• 对芳香族有机
	剂 (除芳香族有机物和氯化溶 剂)性能良好;	物、氯化溶剂 以及气体防护 不足
	✓ 抗老化性能优良;	
	✓ 耐磨损和切割;	
	✔ 低温条件下也弹性良好	
	✓ 防护 <mark>极性溶剂</mark> 如酮类、醚、酯 性能 <mark>优良</mark> ;	• 对芳香族有机 物和非极性溶 剂防护不足
	✓ 抗腐蚀性优良如强酸强碱;	
	✓ 对气体和水蒸气防护优良;	
	✓ 灵活性好,抗氧化和磨损	

选择手套时考虑有效防护与手套触感、操作灵巧性的适当平衡!

常用化学防护 手套材质	优 点	缺 点	
聚乙烯醇 PVA	抗酮、酯、醚、 <mark>芳香族、氯化溶剂等</mark> 绝大部分有机溶剂性能优良	遇水溶液、醇会很快 <mark>溶解</mark>	
氟橡胶/丁基橡胶手套	✓ 防护脂肪族烃、卤代烃、芳香烃等有机物性能优良✓ 防护强酸强碱等腐蚀品性能优良		

实验防护手套使用注意事项

- 使用前: 应仔细检查所要佩戴的手套, 尤其是指缝处, 确保质量完好, 未老化、无破损;
- 可多层防护, 确保安全;
- 使用后: 正确脱除一次性手套; 沾染危险化学品的手套扔进手套回收箱;
- 非一次性手套使用后清洗晾干;
- 离开实验室或接触个人物品前须摘掉手套,避免有毒物质扩散。 如接触电梯按钮、门把手、电话、键盘鼠标、笔等。

■呼吸系统的防护

- ➤ 化学实验室常见危害来源: 微小颗粒物、有毒有害气体和危险化学品挥发的蒸气
- > 呼吸防护器具类型:

第1步

将面罩罩住口鼻, 拉起上方头带, 将头戴置于头部位置。

第2步

第二步双手将颈后卡扣扣住

第3步

第三步调整头带松紧,使口罩 与面部密合良好,先调整头带, 然后调整颈后头带。

每次佩戴面具时, 请选择以下其中一个方法检测气密性

正压密合性检测 (呼气)

将手掌盖住呼气阀轻轻呼气, 面具会轻微鼓起,如果空气从 面部及面具间漏出,调整面具 位置,在调节头带松紧度,使 其达到气密良好。

负压密合性检测 (吸气)

将手掌盖住滤毒盒表面轻轻吸气, 面具应有轻微的塌陷,并向脸部靠拢,如您感觉气体从面部和面具间 漏进,请重新调整面具位置和头带 的松紧度,以达到密合良好。

■防护服

防护躯体皮肤受到伤害,保护日常着装不受污染。

普通化学实验服: 棉质、长袖、过膝; 保持干净, 常清洗;

各种防化服: 危险化学品泄漏高风险实验室和事故处理现场

■ 通风柜

- · 防止直接吸入有毒有害气体、蒸气或微粒,所有 涉及挥发性、有毒有害和刺激性气体以及毒性 不明的化学品的操作,都应在通风柜中进行;
- ・ 柜内不可放大件设备、 **堆放试剂**;
- 开启前, 打开进风通道(门/窗);
- ・尽量将柜门放低;
- ・不可将头伸进通风柜。

化学实验基本防护要求:

- ◆ 佩戴贴合眼眶四周的防护眼镜;
- ◆ 穿长袖棉质实验服;
- ◆ 穿长裤和不漏脚面的鞋;
- ◆ 长发束起。

☑风险辨识——物的因素(化学性)

爆炸品

压缩气体和 液化气体

易燃液体

易燃固体、自燃物 品和遇湿易燃物品 易燃固体、自燃物 品和遇湿易燃物品

有毒物品

放射性物品

腐蚀品

粉尘和气溶胶

一什么是爆炸?爆炸的分类

物理爆炸

化学爆炸

核爆炸

■物理爆炸特点及实验室可能发生的物理爆炸

物理爆炸是由于温度、体积、压力等物理因素的改变引起的爆炸,

爆炸前后物质的性质及化学成分均没有发生改变;爆炸破坏性主要取

于容器内部压力。

化学爆炸特点及实验室可能发生的化学爆炸

化学爆炸是物质在极短的时间之内完成化学变化,形成其他物质,同时产生大量气体和能量的现象。化学爆炸特点:反应速度快,瞬间完成;大量放热,产生高温;生成大量气体,形成高压等特点。实验室可能发生化学爆炸的情况包括:

容易忽视:实验室冰箱存放有机试剂的注意事项

选择合适的防爆冰箱

存放有机试剂的容器

有机试剂应放置在密闭、无缝、**标有标签**的玻璃瓶或塑料瓶中,以防止泄漏和蒸发。同时,瓶身上应贴有标签,标明**物品名称、储存日期、危险性**等信息,并遵循规范的颜色编码标准。

安全措施

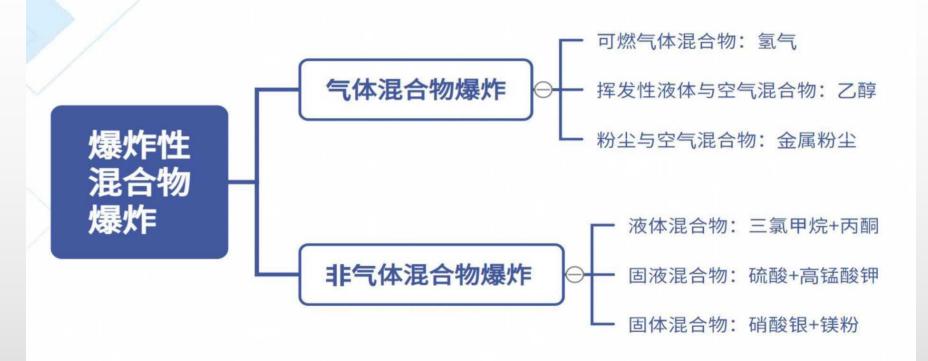
有机试剂一般需要在低温下保存,因此应将其存放在低温区域内。但是,不同的有机试剂根据具体情况进行**分类储存**,并在每个瓶子上标注储存温度的要求。

易形成过氧化物的化合物的储存

类别	危险性	打开日期	接收日期
A类	严重危险性	3个月	1年
B类	浓缩危险性	6个月	1年
C类	震动和热敏感性	6个月	1年
D类	有形成过氧化物的潜在性	仅在证明有过氧化物存在	下

注:**A类(能与空气接触自发形成易爆物):** 丁二烯(液体单体)、异丙基醚、氨基钠(钾)、二乙烯基乙块、 1,1-二氯乙烯等。

B类(在外部能量如蒸馏、浓缩等作用下形成爆炸性的过氧化物): 乙缩醛、乙醛、乙醚、四氢呋喃、2-戊醇、 苄醇、2-丁醇、呋喃、2-苯乙醇、环己醇、2-丙醇等。

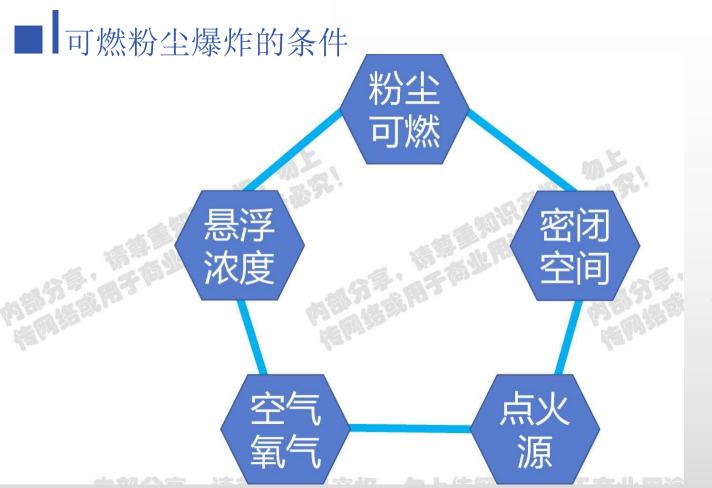

C类(高反应性并能自发聚合,内部积累过氧化物,在这些反应中所形成的过氧化物对震动和热极为敏 感): 丙烯酸、甲基丙烯酸甲酯、丙烯腊、苯乙烯、丁二烯(气)、氯乙烯、乙烯基乙块(气体)。

D类(可能形成过氧化物的常用化合物);丙烯醛、对氯苯乙醚、烯丙基醚、烯丙基苯基醚。

有机过氧化物爆炸预防措施

规范存储严 避免形成过氧化物 易形成过氧化物物质 过量试剂淬灭 易 提前分析预判 控制反应规模 制爆化学品 , 禁混存

■混合物爆炸的分类



■混合存在爆炸危险的试剂组合

	氧化剂	还原剂	氧化剂	爆炸品	强酸	有机物
	高氯酸盐、氯酸盐	硫化物、低级醇	氧化剂	叠氮化物	一 硫酸、硝酸	环戊二烯
	高氯酸盐、氯酸盐、 过氧化物	镁、锌、铝粉	一 硝酸	二硫化碳、乙醇	硝酸	二硫化碳、乙醇
1	氧化剂	强酸	氧化剂	有机物	氧化剂	弱氧化剂
	高锰酸钾	▶ 浓硫酸	▶ 过氧化氢	▶ 丙酮、胺类	硝酸铵	亚硝酸钠
	高氯酸盐、氯酸盐	→硫酸、硝酸	过氧化二苯甲酰	氯仿等有机物		混运,更不能与还 有机物等混储。

实验室粉尘爆炸事故案例

机械火源 化学火源 电火源 热火源

■风险辨识——物的因素(生物性)

传染病媒介物

致害动物

致病微生物(细菌、 病毒、真菌等)

致害植物

其它

☑风险辨识——环境因素

环境因素- 室内

室内地面湿滑 室内作业场所狭窄 室内作业场所杂乱 室内地面不平 室内楼梯缺陷 墙和天花板上的开口缺陷 室内安全通道缺陷 房屋安全出口缺陷 采光不良 作业场所空气不良 室内温度、湿度、气压不适 室内给、排水不良 作业场所含氧量不足

环境因素- 室外

恶劣气候与环境

作业场地和交通设施湿滑、 狭窄、不平

强迫体位

综合性作业环境不良

☑风险辨识——管理因素

组织架构不健全

责任制未落实

规章制度不完善

▶缺少应急预案演练

管理人员不足

安全经费投入不足

缺少职业健康管理

▶缺少安全培训准入

▶ 操作规程不规范

☑ 风险防控——行政处罚风险

剧毒化学品

易制爆

放射源

射线装置

公安-治安

环保-辐射

易制毒

麻醉药品

压力容器

病原微生物

公安-禁毒

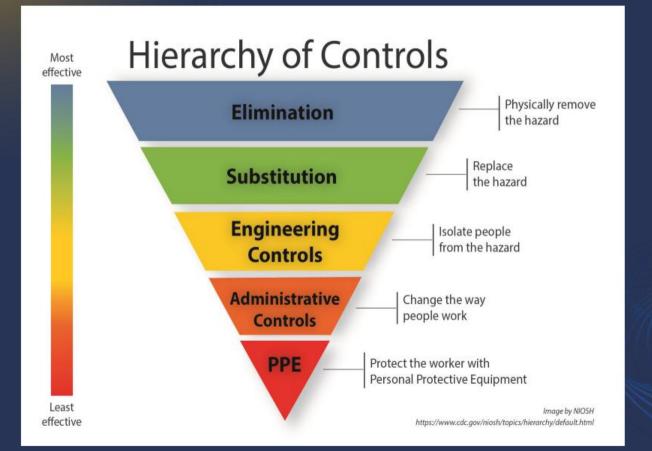
药监部门

质监局

卫健委

人员的不安全行为是导致事故的主要因素

与不安全行为有关的因素	伤害比率	
人员反应	14%	
个人防护装备	12%	
人员位置/姿势	30%	
工具和设备	28%	
工作环境与秩序	12%	


☑风险防控——人的方面

加强实验指导, 做好风险评估, 改善实验条件, 配备防护用品

☑风险防控——物的方面

☑风险防控——环境方面

布局合理 (实验区与休息区分开) 地面干燥平整 (避免湿滑)

通风良好、空气洁净

实验室环境有序 (物品使用后归位)

给排水正常

采光充足、无反光等

危险化学品规范存储 (存储位置安全)

温度、湿度、压力适宜

密闭环境注意氧气环境

逃生通道畅通 (实验通道)

安全出口畅通 (无试剂、危险废物)

特殊环境安全 (激光、辐射等)

☑ 风险防控-管理控制

☑风险防控——管理控制

